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Abstract: The generalised scaling framework is applied to the intensity-duration-frequency {IDF) description
of extreme rainfall with the areal reduction factor. We put forward the hypothesis that the cumulative
distribution function for the annual maximum series of mean rainfall intensity has a scaling property over the
ranges | to 24 hours and 1 to 1000 sq. km. This behaviour is demonstrated through an examination of the
scaling properties of the moments and the scaling of the parameters of an extreme value distribution fitted to
the high-resolution rain gauge, and the areal reduction factor (ARF) curves currently used in design. A
simple analytical formula for the IDF relationship is proposed, which embodies the scaling behavicur. Once
the scaling parameter has been obtained for a gauge or set of gauges in a region and/or a weather radar data,
this formula enables the calculation of rainfall intensities, of a chosen return period and duration shorter than
a day, directly from the information obtained from the analysis of daily data.
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1. INTRODUCTION
Intensity-duration-frequency (IDF) relations have

particular return period, Bell [1969] found that A
was a function of return period and Iocation,
whereas b and »n were a function of location only.
Wenzel [1982] found n to be in the range 0.4 to

been—widely—used—in—enginesring-practice—{or
design flood estimations for over a century. One
of the first empirical IDF relations was derived by
Sherman [1903], who collated measurements
taken at various locations in the United States
from 1880 to i905. He concluded that the

_maximum observed rain rate /, in inches per hour,

was telated to duration 7, in minutes, as
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the relation as [ = for + < 3 hours. The
t+30

frequency of the storms was represented as
“ordinary”, “extraordinary”, and “maximum”. In
the discussion of Sherman’s results, Webster

[1905} found that { =-—, where A increased
f

from 12 to 18 and 30585 for ordinary,
extraordinary, and maximum rainfall respectively,
while n was approximaiely constant at 0.5-0.6.
Bell [1969] proposed the empirical IDT relation

where £ is the average rainfall

P=—
(r+ 8"

intensity in mm/minute over ¢ minutes Tor a

0.84 for various locations in the United States. In
a recent work, Koutsoyiannis et al [1998]
proposed a generalized IDF relation in the form

e a(t)
wdy '

{1}

~where-te-isthe-rainfai intC’H’Sit’}f';"'T O &t Tt Tl

period, and d - s the duration of the extrems
event. The function a() can be determined from
the probability distribution  function of the
maximum rainfall intensity, and the function bid)
is sought in the form

b{dy={(d+8)". (2
The IDF curves described above apply to point
rainfall. More important in practical applications
are statistical properties of extreme rainfall over a
given area, which usually wre calculated by
multiplying point intensity by the so-called areal-
reduction-factor (ARF). The latter is defined as
the ratio or the mean rainfall ntensity over a
given urea to the maximum point intensity of
rainfall. By definition, the ARF takes values in
the range 0 — 1. The estmation of ARF is &
complex problem and different approaches have
been developed, based on wvarious statistical
technigues, as well as on various assumptions
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about temporal and spatial correlation structure of
rainfal] fields [see US Weather Bureau, 1957;
Bell, 1976; Rodriguez-lturbe and Mejia, 1974,
Myers and Zehr, 1980; Omolayo, 1993,
Srikanthan, 1993; Sivapalan and Bloschl, 1998;
Asquith and Famigliettl, 2000; and references
therein]. Two kinds of ARF are currently in use:
{a) Fixed-area (or geographically-fixed), and (b)
Storm-centered. The fixed-area ARF is based on
the frequency analysis of a time series of annual
maximum precipitation for a given fixed area. An
assumption is made about equality of the
probability distribution function of the point and
areal rainfall. The second type of ARF refers to
any given storm. In this paper we consider only
fixed-area ARF.

2. SIMPLE SCALING HYPOTHESIS FOR
POINT RAINFALL

In contrast to the above mentioned treatments
which depend on curve-fitting techniques, a
natural source for theories regarding the re-
scaling of rainfall statistics is to be found in the
scaling hypotheses popularised by Mandelbrot
{1982] and Lovejoy and Schertzer [1985]
Burlando and Rosso [1996] in a pioneering paper,
sought to apply the scaling hypotheses to annual
maximum series of rainfall depth.  In their work,
the scaling and multiscaling properties of the
statistical moments of rainfall depth of different
duration were analysed and a lognormal
probability distribution was used to model its

& (hoLirs)

Figure I, Scaling of the moments of maximum
annual rain rate {From top to bottom: q = 3.0, 2.0,
1.0,0.5 1.

The return period of an extreme event with an
intensity [; 2 i will be, as usual, given by:

T, >i)= (6)

1-F, ()

statistical properties. In a recent work [Menabde
et al. 1999] we analysed a high resolution (0
minutes} 25-year long record of rainfall intensities
from Melbourne, Australia. ‘We have shown that
the mean annual maximum rain rate (intensity}
has a simple scaling property expressed by:
i diisr
I,=0dIDy"I,, (3
where the above equality is understood in the
sense of equality of probability distribution
functions, and (3) holds for duration over the
range from 30 minutes to 24 hours. As a direct
consequence of the relation (3) the moments of
the mean annual maximum rainfail intensity 7, are
scaling as

<13> = f{gyd 7. (4)

where K{g) = 7. The scaling properties of the
moments and the dependence of the scaling
expenent on moment order are shown in Figures |
and 2, respectively.

The annual maximum mean rain rate f; is
considered  as a random  variable with a
cumnulative distribution function

F(iy=Pr(I, <i). )
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Figure 2. Scaling exponent dependence on the
moment order.

The scaling property (3} can be written explicitly
in terms of cummulative distribution function
(CDH):

F ()= F,((d/D)"0). (7
If we assume that the CDF of extreme events has
the (standardised) functional form

11— f
Fy () = F(C=Ee),
Gwa’
where £ is some function, independent of , from
(7 we get

t, =(dIDY" .

(8)

)



o, =d/Dy"c,. (10

Substituting (8), (92, and (10} in formula (6) and
inverting it in respect to { we get the IDF relation
in the general form (1) with a(T) and b{d) given
by

a(T)=pu+oF ' (1-1/T), (11
b(d)=4d", (12)
where 4 =4,D" and O=0,D" are

constants, independent of D (as it follows from
{9y and (10)). It can be segen, that the simple
scaling hypothesis (3) leads to & = 0 in the
formula (2}, proposed by Koutsoyiannis er al.
[19G8].

3. GENERALISED SCALING AND ARF

A simple, but somewhat naive way to include the
areal reduction factor in the scaling framework, is
to introduce & new random variable - the annual
maximum mean rain rate /;, over the duration d
and the area @, and assume that it has a simple

scaling property, analogous to (3), both in time .

and space:
dist »
1,,=(d/IDYy"alAy"1,,, (13)
with two different exponents nand A This

relation may be valid {subject to empirical
justification) in some range of ¢ and A. However,
as the area « tends to zero, the mean rain rate

definition {i4) that the scale transformation

function f has the group property

fldydsy=[fd dyfld,dy) (8
The most general solution 1o functional equation
{16) is given by

Hd
fia.py="9 a7
(D)
where #(d) is some arbitrary function, We can

find a simple form of #() if we mention that for a
large duration the annual maximusm rain rate has a
simple scaling property {3). This means that for
d, D much greater then some threshold value d,

Fd.DY=({dID)". (18)

A simple form of (d) satisfying (18) for d, U >>
dQ is

1
Hdy = —— (19)
@) 14(d/d,)"
and
. I+(D/d,)Y
d, D) = e 20
fld. D) T drd,y (20)

In the same way for the scale transformation
function ¢{d.aA) we can gat

1+ A ag(d)]
1+ lala ()]

where ag(d) is a threshold area, which is supposed

o{d,a, Ay =

2D

tends-to ity whick-obvioustycontradicts—to
the common sense and empirical facts, and makes
it impossible to connect the properties of point
and areal rainfall,

In order to overcome this problem we make a

..more.. general _assumption. about the scaling

properties of rainfall, assuming that
dist

[d‘o = f(d. D), (143

and
dist

I,,=pld.a AY, ,

where the scale transformation functions f and ¢
depend on both scales d, I and a, A. and not only
on their ratio, as in the case of simple scaling. We
assume that there are some empirically defined
timits for duration Dy and area A, such that (14}
holds for all a, A < A and d, P2 < Dy with the same
functional dependence. This type of generalised
scaling model was first introduced by Benzi er af,
119931,

(15}

It is not difficult to find the most general
functional form of fand @ It can be seen from
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o depend op the duration d.__As it is shown below
this assumption is supported by the empirical
data. The generalised scaling Thypotheses,
expressed by (14), (13), (20), and (21), together
with a quite ~general assumption about - the
functional form of the CDF of extreme value
distribution

). (22)

i— I
’F‘d,n(i) - F(Ji
d.a
leads to a simple IDF relation with an areal
reduction factor. Indeed, combining (14) and
(15), we get

dist

Iy = fOd)p(d 0, a)i,, (23)
and
Fooliy=F, 1/ 70, )™ (d.0,a)i}
(24)
Hio = f—-i(Os CE)@Mi{dsOva)ﬂ@,e : (25)
6, = [ O0.p (d0,a)o,. Q6

Substituting {25) and (26) into formula {6} and
inverting it in respect to { we get the [DF relation
with the ARF factor in the most general form:



Hoo T F 7 (1-1/T)

i(d,a,T) = :
I+{d/dy))" Hi+a/a,(d)]"}

(27)
where o and ohp are the values of the
parameters U4y, and oy, for zero d and a. Of
course, the rainfall intensity at zero duration does
not have any physical meaning, but the constant
dq can be interpoiated from empirical data. In
fact, as we will see below, for the most practically
important cases 1t 13 not necessary o know the
parameter dp.

Let us consider some particular cases. First, for a
point rainfall, i.e. when a =0, we get

Hoo + T oF H1-1/T)

(d.T) =
4.0 L+ (d/dy)

(28)

This relation is analogous to the general empirical
relations, proposed by Bell [1969] and
Koustsoyannis et al. {1998] (see equations (1} and
{2)). As we already mentioned, the parameter dy
cannot be measuwred directly, and should be
interpolated  from empirical data.  For the
particufar case of Melbourne rainfall data, as it is
obvious from Figure 1, it is of order of few
minutes.  From practical point of view, we are
mainly interested in estimating the maximum
rainfall intensity in the range ' — 24 hows, ie

that the scaling properties will be the same for
different accumulations, neither is it obvious that
the moments will scale at all.  This should be
checked empirically in every particular case. (see
Figure 33.

Thus. the generaiised scaling hypothesis leads to
the foliowing IDF relation with the areal
reduction factor

U+oF H(1-1/T)

i(d,a,T)= 30

( ) d"{1+[ala ()} G0
g
ks

g EIG AIQ BIB a0

i (mmin

Figure 3. CDF-s for annual maximum rainfall for
different accumulations (From left to right: 12, 2,
1, and 0.5 hours).

when d >> dy. In this case formula (28) can be
further simphified and takes the following form

H+oF 7 (1-1/T)
- T
where 4L = Uy od] and & = &y od . This form

Hd,T) = (29)

“ ofﬂ)’f r.él.aﬁon was first ﬁ;opesed in.Menasaé er -

al. [1999].  The scaling exponent 77 can be
estimated from a short record of high resolution
rain gauge data from the scaling properties of the
moments, as-in Figure- 1 and 2Z;- and it is
distribution free. Parameters 4 and o can be
estimated from a long sequence of, say, 24-hour
rain gauge data and some particular functional
form of CDF has to be accepted. As it was shown
in [Menabde e al, 199%9], in the case of
Melbourne  rainfall  data, Gumbel (EVD
distribution provides a good fit

To estimate the areal reduction exponent A either
a weather radar data or a dense network of rain
gauges can be used. First, extreme events should
be identified, and then studying the scaling
properties of spatial moments of the mean areal
rainfall we can estimate the scaling exponent A
and the parameter ay. A priory it is not obvious

The areal reduction factor itself, as it can be scen
from eq. (30) has the form

ARF(a,d) = !

e 31
1+{a/a, ()Y 4o

As it was mentioned above, to provide a

comprehensive justification of our working
hypothesis it is necessary to analyse time series of
rainfall of a dense network of rain gauges and/or a
long continucus records of weather radar. Such
data sets were not available at the ime of writing.
As a surrogate for the comprehensive analysis we
analysed the standard depth-area curves [World
Meteorological Organisation, 1983], which are
currently recommended for use in Australia. The
results for the empirically derived ARF for
different durations {30min, 1h, 3h, 6h, and 24 h)
fitted by formula (31) are shown in Figure 4. The
value of the exponent 4 is 0.43, and the parameter
apd)y can itself be fitted by a scaling relation.
Thus, ag{d} can be parametrised as

agldy=0Cd" (32)

We put forward hypothesis, that the form (315 of
the ARF factor is universal, but the scaling
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exponents, ¢, and A, are different for different
types of climate. To check this hypothesis, more
detailed analysis of Australian data for different
locations is necessary.
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Figure 4. ARF factors for different accumulation
periods (From top to bottom: 0.5, 1, 3, 6, and 24
hours).
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preliminary. More comprehensive analysis of
dense networks of rain gauges and weather radars
for different location is needed io further advance
the theory.
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A EONCLUSION ~ “'Mandelbmt, BB The Frectl Geomeiry of

We have presented a hypothesis that the annual
maximum rainfall intensities for  different
durations and areas can be considered as random
variables characterised by the same CDF with
property  rescaled parameters. The scale
transformation functions can be derived if one
assumes that the rainfall intensities for different
time and space scales are comnected through
generalized scaling relations, This hypothesis was
independently checked for a long record of rain
gauge time series (i.e. point rainfall) and the ARF
curves recommended for use in Austalia. The
proposed methodology allows one to derive a
simple analytical IDF relation which includes the
ARF. The paper presents an attempt to find a link
between the empirical approach, currently used m
the engineering practice. and modern scaling
theories of time and space properties of rainfall.
We consider the results presented here as
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